Без заголовка

Из других соединений ртути известны такие, как гремучая ртуть Hg(ONC)2, нитрат Нg(NO3)2, сульфат (HgSO4) и сульфит (HgSO3) ртути, красный и желтый йодид ртути и др.Слушать этот музыкальный файл

1. Общие сведения о ртути
Ртуть - удивительный химический элемент. Это очевидно хотя бы потому, что ртуть - единственный металл, находящийся в жидком состоянии в условиях, которые мы обычно называемым нормальными. В таких условиях ртуть способна испаряться и формировать ртутную атмосферу. Именно эти свойства определили особое положение ртути в нашей жизни. Ртуть оказала человечеству огромные услуги. Много веков она находит применение в самых разнообразных сферах человеческой деятельности - от киноварной краски до атомного реактора. На использовании различных свойств ртути были созданы самостоятельные отрасли промышленности, в том числе, добыча золота методом амальгамации, производство газоразрядных ртутных ламп, химических источников тока, хлора и каустической соды. Ртуть применяется в медицине, фармацевтике, стоматологии. Она служила теплоносителем в одном из первых реакторов на быстрых нейтронах. Ртуть причастна к научным открытиям и техническим достижениям: изобретение Торричелли ртутного барометра, Амантоном и Фаренгейтом ртутного термометра, опыты Паскаля по изучению атмосферного давления, открытие сверхпроводимости Камерлинг-Оннесом, получившего в 1913 г. Нобелевскую премию, знаменитый опыт Майкельсона-Морли, доказавший отсутствие эфирного ветра при движении Земли, эксперименты Дж. Франка и Г. Герца, подтвердившие теорию строения атома Н. Бора, создание вакуум-насоса Ленгмюром и другое. Пары ртути были первым проявителем в фотографическом деле, который использовался Даггером. Особое значение ртуть имела для развития аналитической химии и открытия многих химических элементов и их соединений. В 1922 г. Нобелевской премии был удостоен чешский химик Я. Гейровский, создавший полярографический метод химического анализа, где ртуть играет далеко не последнюю роль. Однако ртуть может быть не только полезной, но и вредной для всего живого. В малых количествах она всегда присутствует в окружающей нас среде. При определенных условиях, особенно в результате промышленной и бытовой деятельности людей, ее концентрации в среде обитания могут заметно возрастать, что способно оказать негативное воздействие на наше самочувствие и состояние здоровья. Одна из самых известных экологических трагедий 20 столетия - болезнь Минамата - вызвана загрязнением окружающей среды ртутью.
1.1. Важнейшие свойства ртути
Ртуть (Нg) -химический элемент II группы периодической системы элементов Д.И. Менделеева; атомный номер 80, относительная атомная масса 200,59. Ртуть в обычных условиях представляет собой блестящий, серебристо-белый тяжелый жидкий металл. Удельный вес ее при 20°С 13,54616 г/см3; температура плавления равна -38,89°С, кипения 357,25°С. При замерзании (-38,89°С) она становится твердой и легко поддается ковке.
Даже в обычных условиях ртуть обладает повышенным давлением насыщенных паров и испаряется с довольно высокой скоростью, которая с ростом температуры увеличивается. Это приводит к созданию опасной для живых организмов ртутной атмосферы. Например, при 24°С атмосферный воздух, насыщенный парами ртути, может содержать их в количестве около 18 мг/м3; такой уровень в 1800 раз превышает ПДК (предельно допустимую концентрацию) ртути в воздухе рабочей зоны и в 60000 раз ПДК в атмосферном воздухе. Ртуть способна испаряться через слои воды и других жидкостей.
При действии на ртутные пары вольтовой дуги, электрической искры и рентгеновских лучей наблюдаются явления люминесценции, флюоресценции и фосфоресценции. В вакуумной трубке между ртутными электродами при электрических разрядах получается свечение, богатое ультрафиолетовыми лучами, что используется в технике при конструировании ртутных ламп. Еще одно замечательное свойство ртути связано с тем, что при растворении в ней металлов образуются амальгамы - металлические системы, одним из компонентов которых является ртуть. Они не отличаются от обычных сплавов, хотя при избытке ртути представляют собой полужидкие смеси. Соединения, получающиеся в результате амальгамирования, легко разлагаются ниже температуры их плавления с выделением избытка ртути, что нашло широкое применение при извлечении золота и серебра из руд. Амальгамированию подвержены металлы, смачиваемые ртутью. Стали легированные углеродом, кремнием, хромом, никелем, молибденом и ниобием, не амальгамируются.
В соединениях ртуть проявляет степень окисления +2 и +1. Обладая высоким потенциалом ионизации, высоким положительным окислительным потенциалом, ртуть является относительно стойким в химическом отношении элементом. Это обусловливает ее способность восстанавливаться до металла из различных соединений и объясняет частые случаи нахождения ртути в природе в самородном состоянии.
На воздухе ртуть при комнатной температуре не окисляется. При нагреве до температур, близких к температуре кипения (300-350°С), она соединяется с кислородом воздуха, образуя красный оксид двухвалентной ртути НgО, который при дальнейшем нагревании (до 400°C и выше) снова распадается на ртуть и кислород. Желтый оксид ртути НgО получается при добавлении щелочей к водному раствору соли Hg(ll). Существует и оксид ртути черного цвета (Нg2О), нестойкое соединение, в котором степень окисления ее равна +1. В соляной и разбавленной серной кислотах и в щелочах ртуть не растворяется. Но она легко растворяется в азотной кислоте и в царской водке, а при нагревании в концентрированной серной кислоте. Металлическая ртуть способна растворяться в органических растворителях, а также в воде, особенно при отсутствии свободного кислорода. Растворимость ее в воде зависит также от рН раствора. Минимальная растворимость наблюдается при рН=8, с увеличением кислотности или щелочности воды она увеличивается. В присутствии кислорода ртуть в воде окисляется до ионной формы Нg2+ (создавая концентрации до 40 мкг/л).
Ртуть реагирует с галогенами хлором, йодом, фтором, бромом, и с другими неметаллами серой, селеном, фосфором. Практическое значение имеют йодная ртуть HgJ, хлористая ртуть (каломель) Нg2Cl2 и хлорная ртуть (сулема) НgCl2. При взаимодействии ртути с серой образуется сульфид ртути HgS - самое распространенное в природе ее соединение, в форме которого добывается почти вся ртуть. Оно известно в трех модификациях: красная (идентичная минералу киноварь), черная (черный сульфид ртути, или метациннабарит) и - р-киноварь (в природных условиях не обнаружена). Из других соединений ртути известны такие, как гремучая ртуть Hg(ONC)2, нитрат Нg(NO3)2, сульфат (HgSO4) и сульфит (HgSO3) ртути, красный и желтый йодид ртути и др.
1.2. Распространенность ртути в природе
Ртуть - редкий элемент. Ее средние содержания в земной коре и основных типах горных пород оцениваются в 0,03-0,09 мг/кг, т. е. в 1 кг породы содержится 0,03-0,09 мг ртути, или 0,000003-0,000009 % от общей массы. Для сравнения - одна ртутная лампа в зависимости от конструкции может содержать от 20 до 560 мг ртути, или от 0,01 до 0,50% от массы. Масса ртути, сосредоточенная в поверхностном слое земной коры мощностью в 1 км, составляет сто миллиардов тонн, из которых в ее собственных месторождениях находится только 0,02%. Оставшаяся часть ртути существует в состоянии крайнего рассеяния, по преимуществу в горных породах. В водах Мирового океана рассеяно 41,1 млн. т ртути, что определяет невысокую среднюю концентрацию ртути в его водах - 0,03 мкг/л. Именно эта рассеянная ртуть создает природный геохимический фон, на который накладывается ртутное загрязнение, обусловленное деятельностью человека и приводящее к формированию в окружающей среде зон техногенного загрязнения.
В промышленности для получения металлической ртути используют два варианта технологии её извлечения из руд: окислительно-дистилляцион>ный обжиг с выделением ртути из газовой фазы и комбинированный способ, включающий предварительное обогащение и последующую пирометаллургическую переработку концентрата. По оценкам специалистов, человеком было произведено порядка 700000 т ртути. Ртуть концентрируется не только в ртутных минералах, рудах и вмещающих их горных породах. Согласно закону Кларка-Вернадского о всеобщем рассеянии химических элементов, в тех или иных количествах ртуть обнаруживается во всех объектах и компонентах окружающей среды, в том числе в метеоритах и образцах лунного грунта. В повышенных концентрациях ртуть содержится в рудах многих других полезных ископаемых (полиметаллических, медных, железных и др.). Установлено накопление ртути в некоторых глинах, горючих сланцах, известняках, в углях, природном газе, и нефти. Современные данные свидетельствуют о высоком содержании ртути в мантии (второй от поверхности, после земной коры, оболочке Земли), в результате дегазации которой, а также естественного процесса испарения ртути из земной коры (горных пород, почв, вод), наблюдается явление, получившее название «ртутного дыхания Земли». Процессы эти идут постоянно, но активизируются при извержениях вулканов, землетрясениях, геотермальных явлениях и т. п. Поставка ртути в окружающую среду в результате ртутного дыхания Земли (природная эмиссия) составляет около 3000 т. в год. Поставка ртути в атмосферу, обусловленная промышленной деятельностью человека (техногенная эмиссия), оценивается в 3600-4500 т. в год.
В природных условиях ртуть обычно мигрирует в трех наиболее распространенных состояниях - Нg0 (элементарная ртуть), Нg2+ (ион двухвалентной ртути), СН3Нg+ (ион метилртути), а также в виде менее распространенного иона Нg22+ Химические соединения Hg(ll) встречаются в природе значительно чаще, нежели Hg(l). В водах между Нg0, Нg22+ и Нg2+ устанавливается равновесие, которое определяется окислительно-востановител>ьным потенциалом раствора и концентрацией различных веществ, формирующих комплексы с Нg2+. Ионы Нg(II) образуют устойчивые комплексы с биологически важными молекулами. Именно высокое химическое сродство ртути (II) и ее метилированных соединений к биомолекулам в существенной мере определяет токсикологическую опасность ртути в условиях окружающей среды.
Поступающие в окружающую среду из природных и техногенных источников ртуть и ее соединения подвергаются в ней различным преобразованиям. Неорганические формы ртути (элементарная ртуть Нg0 и неорганический ион Hg2+) претерпевают преобразования в результате окислительно-восстановите>льных процессов. Пары ртути окисляются в воде в присутствии кислорода неорганическую двухвалентную ртуть (Hg2+), чему в значительной мере способствуют присутствующие в водной среде органические вещества, которых особенно много в зонах загрязнения. В свою очередь, ионная ртуть, поступая или образуясь в воде, способна формировать комплексные соединения с органическим веществом. Наряду с окислением паров ртути образование Hg2+ может происходить при разрушении ртутьорганических соединений.




А так же :


События, которые планирует освещать РИА Новости 23 марта | Анонсы | Лента ...


Почему люди выбирают общение через интернет?
Говорят, с изобретением телефона люди стали дальше друг от друга - с тех пор, чтобы пообщаться, не приходится преодолевать разделяющие их расстояния, порой весьма значительные. Телефон дал возможность завести и поддерживать знакомства делового и личного характера множеству людей, которым иначе никогда не пришлось бы встретиться.


Отпуск военнослужащему по призыву. Судебная практика


Концептуальные противоречия специальной теории относительности.
Станишевский Олег Борисович Введение. Прошло сто лет с момента создания специальной теории относительности (дальше – СТО). Почему имеет смысл говорить о каких-либо ее противоречиях, а не об авторитете и популярности СТО? Есть две причины, по которым следует поговорить о главных противоречиях теории относительности.


Autumnia - O’Funeralia (2009)



Без заголовка
Hosted by uCoz